Recent PM2.5 air quality improvements in India benefited from meteorological variation

  • Dey, S. et al. Variability of outdoor fine particulate (PM2.5) concentration in the Indian Subcontinent: a remote sensing approach. Remote Sens. Environ. 127, 153–161 (2012).

    Article 

    Google Scholar
     

  • Li, C. et al. India is overtaking China as the world’s largest emitter of anthropogenic sulfur dioxide. Sci. Rep. 7, 14304 (2017).

    Article 

    Google Scholar
     

  • 2023 World Air Quality Report (IQAir, 2024).

  • Pandey, A. et al. Health and economic impact of air pollution in the states of India: the Global Burden of Disease Study 2019. Lancet Planet. Health 5, e25–e38 (2021).

    Article 

    Google Scholar
     

  • Greenstone, M. & Hasenkopf, C. Air Quality Life Index 2023 Annual Update (Energy Policy Institute at the University of Chicago, 2023); https://aqli.epic.uchicago.edu/wp-content/uploads/2023/08/AQLI_2023_Report-Global.pdf

  • NCAP: National Clean Air Programme (Central Pollution Control Board, Ministry of Environmental Forests and Climate Change, Government of India, 2019); https://moef.gov.in/wp-content/uploads/2019/05/NCAP_Report.pdf

  • List of 131 Non-Attainment Cities (CPCB, 2023); https://cpcb.nic.in/uploads/Non-Attainment_Cities.pdf

  • Harish, S. Renewing India’s Air Quality Management Strategy in the Shadow of COVID-19 (Centre for Policy Research, 2021).

  • Ganguly, T., Selvaraj, K. L. & Guttikunda, S. K. National Clean Air Programme (NCAP) for Indian cities: review and outlook of clean air action plans. Atmos. Environ. X 8, 100096 (2020).

    CAS 

    Google Scholar
     

  • Jacob, D. J. & Winner, D. A. Effect of climate change on air quality. Atmos. Environ. 43, 51–63 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Singh, N., Agarwal, S., Sharma, S., Chatani, S. & Ramanathan, V. Air pollution over India: causal factors for the high pollution with implications for mitigation. ACS Earth Space Chem. 5, 3297–3312 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Madineni, V. R. et al. Natural processes dominate the pollution levels during COVID-19 lockdown over India. Sci. Rep. 11, 15110 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Schnell, J. L. et al. Exploring the relationship between surface PM2.5 and meteorology in Northern India. Atmos. Chem. Phys. 18, 10157–10175 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Paulot, F., Naik, V. & Horowitz, L. W. Reduction in near-surface wind speeds with increasing CO2 may worsen winter air quality in the Indo-Gangetic Plain. Geophys. Res. Lett. 49, e2022GL099039 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gao, M. et al. Seasonal prediction of Indian wintertime aerosol pollution using the ocean memory effect. Sci. Adv. 5, eaav4157 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ojha, N. et al. On the widespread enhancement in fine particulate matter across the Indo-Gangetic Plain towards winter. Sci. Rep. 10, 5862 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ramanathan, V. et al. Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc. Natl Acad. Sci. USA 102, 5326–5333 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Bollasina, M. A., Ming, Y. & Ramaswamy, V. Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334, 502–505 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z. et al. Aerosol and boundary-layer interactions and impact on air quality. Natl Sci. Rev. 4, 810–833 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lin, M. et al. Vegetation feedbacks during drought exacerbate ozone air pollution extremes in Europe. Nat. Clim. Change 10, 444–451 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xie, Y., Lin, M. & Horowitz, L. W. Summer PM2.5 pollution extremes caused by wildfires over the western United States during 2017–2018. Geophys. Res. Lett. 47, e2020GL089429 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xie, Y. et al. Tripling of western US particulate pollution from wildfires in a warming climate. Proc. Natl Acad. Sci. USA 119, e2111372119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl Acad. Sci. USA 116, 24463–24469 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhai, S. et al. Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology. Atmos. Chem. Phys. 19, 11031–11041 (2019).

    Article 
    CAS 

    Google Scholar
     

  • National Air Quality Index (CPCB, 2023); https://cpcb.nic.in/National-Air-Quality-Index/

  • Rahaman, S., Jahangir, S., Chen, R., Kumar, P. & Thakur, S. COVID-19’s lockdown effect on air quality in Indian cities using air quality zonal modeling. Urban Clim. 36, 100802 (2021).

    Article 

    Google Scholar
     

  • Mahato, S., Pal, S. & Ghosh, K. G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ. 730, 139086 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Guttikunda, S. K., Goel, R. & Pant, P. Nature of air pollution, emission sources, and management in the Indian cities. Atmos. Environ. 95, 501–510 (2014).

    Article 
    CAS 

    Google Scholar
     

  • New Environmental Norms for the Power Sector (Centre for Science and Environment, 2016); https://cdn.cseindia.org/userfiles/new-environmental-norms-report.pdf

  • Tibrewal, K. & Venkataraman, C. Climate co-benefits of air quality and clean energy policy in India. Nat. Sustain. 4, 305–313 (2020).

    Article 

    Google Scholar
     

  • Ganguly, T., Khan, A. & Ganesan, K. What’s Polluting India’s Air? The Need for an Official Air Pollution Emissions Database (Council on Energy, Environment and Water, 2021).

  • Beale, C. A. et al. Large sub-regional differences of ammonia seasonal patterns over India reveal inventory discrepancies. Environ. Res. Lett. 17, 104006 (2022).

    Article 

    Google Scholar
     

  • Pai, S. J. et al. Compositional constraints are vital for atmospheric PM2.5 source attribution over India. ACS Earth Space Chem. 6, 2432–2445 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Saikawa, E. et al. Uncertainties in emissions estimates of greenhouse gases and air pollutants in India and their impacts on regional air quality. Environ. Res. Lett. 12, 065002 (2017).

    Article 

    Google Scholar
     

  • Manoj, M. R., Satheesh, S. K., Moorthy, K. K., Gogoi, M. M. & Babu, S. S. Decreasing trend in black carbon aerosols over the Indian region. Geophys. Res. Lett. 46, 2903–2910 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sharma, S. K., Mandal, T. K., Banoo, R., Rai, A. & Rani, M. Long-term variation in carbonaceous components of PM2.5 from 2012 to 2021 in Delhi. Bull. Environ. Contam. Toxicol. 109, 502–510 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mani, S., Agrawal, S., Jain, A. & Ganesan, K. State of Clean Cooking Energy Access in India: Insights from the India Residential Energy Survey (IRES) 2020 (Council on Energy, Environment and Water, 2021).

  • Chowdhury, S. et al. Indian annual ambient air quality standard is achievable by completely mitigating emissions from household sources. Proc. Natl Acad. Sci. USA 116, 10711–10716 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Coal Consumption in India from 1998 to 2022. Statista https://www.statista.com/statistics/265492/indian-coal-consumption-in-oil-equivalent (2023).

  • A Review Report on New SO2 Norms (CEA, 2021); https://cea.nic.in/wp-content/uploads/tprm/2021/08/A_review_report_on_new_SO2_norms.pdf

  • Emission Norms for Passenger Cars, Heavy Diesel Vehicles and 2/3 Wheeler (CPCB, 2017).

  • Jayaraman, K. S. Indo-Gangetic plains are ammonia hotspot of the world. Nat. India 740, 139986 (2020).


    Google Scholar
     

  • Kuttippurath, J. et al. Record high levels of atmospheric ammonia over India: spatial and temporal analyses. Sci. Total Environ. 740, 139986 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gani, S. et al. Submicron aerosol composition in the world’s most polluted megacity: the Delhi Aerosol Supersite study. Atmos. Chem. Phys. 19, 6843–6859 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lucknow tops clean air survey among India’s 47 biggest cities. The Times of India (4 December 2022); https://invest.up.gov.in/wp-content/uploads/2022/12/Lucknow-tops-clean-air-survey_041222.pdf

  • Hunt, K. M. R., Turner, A. G. & Shaffrey, L. C. The evolution, seasonality and impacts of western disturbances. Q. J. R. Meteorol. Soc. 144, 278–290 (2018).

    Article 

    Google Scholar
     

  • Hunt, K. M. R. & Zaz, S. N. Linking the North Atlantic Oscillation to winter precipitation over the Western Himalaya through disturbances of the subtropical jet. Clim. Dynam. 60, 2389–2403 (2023).

    Article 

    Google Scholar
     

  • Madhura, R. K., Krishnan, R., Revadekar, J. V., Mujumdar, M. & Goswami, B. N. Changes in western disturbances over the Western Himalayas in a warming environment. Clim. Dynam. 44, 1157–1168 (2014).

    Article 

    Google Scholar
     

  • Chug, D. et al. Observed evidence for steep rise in the extreme flow of Western Himalayan rivers. Geophys. Res. Lett. 47, e2020GL087815 (2020).

    Article 

    Google Scholar
     

  • Horton, D. E., Skinner, C. B., Singh, D. & Diffenbaugh, N. S. Occurrence and persistence of future atmospheric stagnation events. Nat. Clim. Change 4, 698–703 (2014).

    Article 

    Google Scholar
     

  • Hunt, K. M. R., Turner, A. G. & Shaffrey, L. C. Falling trend of western disturbances in future climate simulations. J. Clim. 32, 5037–5051 (2019).

    Article 

    Google Scholar
     

  • Ravishankara, A. R., David, L. M., Pierce, J. R. & Venkataraman, C. Outdoor air pollution in India is not only an urban problem. Proc. Natl Acad. Sci. USA 117, 28640–28644 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Z., Streets, D. G., de Foy, B. & Krotkov, N. A. Ozone monitoring instrument observations of interannual increases in SO2 emissions from Indian coal-fired power plants during 2005-2012. Environ. Sci. Technol. 47, 13993–14000 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Pant, P. et al. Monitoring particulate matter in India: recent trends and future outlook. Air Qual. Atmos. Health 12, 45–58 (2018).

    Article 

    Google Scholar
     

  • Continuous Ambient Air Quality Monitoring Network (CPCB, 2023); https://airquality.cpcb.gov.in/ccr/#/caaqm-dashboard-all/caaqm-landing

  • Technical Specifications For Continuous Ambient Air Quality Monitoring (CAAQM) Station (CPCB, accessed 12 January 2024); https://erc.mp.gov.in/Documents/doc/Guidelines/CAAQMS_Specs_new.pdf

  • Sharma, D. & Mauzerall, D. Analysis of air pollution data in India between 2015 and 2019. Aerosol Air Qual. Res. 22, 210204 (2022).

    Article 

    Google Scholar
     

  • Barrero, M. A., Orza, J. A., Cabello, M. & Canton, L. Categorisation of air quality monitoring stations by evaluation of PM10 variability. Sci. Total Environ. 524525, 225–236 (2015).

    Article 

    Google Scholar
     

  • Singh, V. et al. Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India. Environ. Pollut. 266, 115368 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ambient (outdoor) air pollution database 2018. World Health Organization https://www.who.int/data/gho/data/themes/air-pollution/who-air-quality-database/2018 (2018).

  • Hoesly, R. M. et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 11, 369–408 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Klimont, Z. et al. Global anthropogenic emissions of particulate matter including black carbon. Atmos. Chem. Phys. 17, 8681–8723 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Crippa, M. G. et al. EDGAR v6.1 Global Air Pollutant Emissions (Joint Research Centre, European Commission, 2022); http://data.europa.eu/89h/df521e05-6a3b-461c-965a-b703fb62313e

  • Sadavarte, P. & Venkataraman, C. Trends in multi-pollutant emissions from a technology-linked inventory for India: I. industry and transport sectors. Atmospheric Environ. 99, 353–364 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Speciated Multipollutant Generator. SMOG-India https://ncapcoalesce.iitb.ac.in/resources/smog-india-emission-inventory/ (2022).

  • Pandey, A., Sadavarte, P., Rao, A. B. & Venkataraman, C. A technology-linked multi-pollutant inventory of Indian energy-use emissions: II. residential, agricultural and informal industry sectors, Atmospheric Environ. 99, 341–352 (2014).

  • Development of Spatially Resolved Air Pollution Emission Inventory of India. (The Energy and Resources Institute, 2021).

  • McDuffie, E. E. et al. A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970–2017): an application of the Community Emissions Data System (CEDS). Earth Syst. Sci. Data 12, 3413–3442 (2020).

    Article 

    Google Scholar
     

  • Li, C., Krotkov, N. A. & Leonard, P. OMI/Aura Sulfur Dioxide (SO2) Total Column L3 1 Day Best Pixel in 0.25 Degree x 0.25 Degree V3 (Goddard Earth Sciences Data and Information Services Center, accessed 12 January 2024).

  • Krotkov, N. A. et al. OMI/Aura NO2 Cloud-Screened Total and Tropospheric Column L3 Global Gridded 0.25 Degree x 0.25 Degree V3 (NASA Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center, accessed 12 January 2024).

  • van Geffen, J. H. G. M., Eskes, H. J., Boersma, K. F., Maasakkers, J. D. & Veefkind, J. P. TROPOMI ATBD of the Total and Tropospheric NO2 Data Products Report NO. S5P-KNMI-L2-0005-RP (KNMI, 2022).

  • Whitburn, S. et al. A flexible and robust neural network IASI-NH3 retrieval algorithm. J. Geophys. Res. Atmos. 121, 6581–6599 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Van Damme, M. et al. Version 2 of the IASI NH3 neural network retrieval algorithm: near-real-time and reanalysed datasets. Atmos. Meas. Tech. 10, 4905–4914 (2017).

    Article 

    Google Scholar
     

  • Franco, B. et al. A general framework for global retrievals of trace gases from IASI: application to methanol, formic acid, and PAN. J. Geophys. Res. Atmos. 123, 13963–13984 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Van Damme, M. et al. Global, regional and national trends of atmospheric ammonia derived from a decadal (2008–2018) satellite record. Environ. Res. Lett. 16, 055017 (2021).

    Article 

    Google Scholar
     

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 

    Google Scholar
     

  • Nakoudi, K., Giannakaki, E., Dandou, A., Tombrou, M. & Komppula, M. Planetary boundary layer height by means of lidar and numerical simulations over New Delhi, India. Atmos. Meas. Tech. 12, 2595–2610 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tai, A.P.K., Mickley, L. J. & Jacob, D. J. Impact of 2000–2050 climate change on fine particulate matter (PM2.5) air quality inferred from a multi-model analysis of meteorological modes. Atmos. Chem. Phys. 12, 11329–11337 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Shen, L., Mickley, L. J. & Murray, L. T. Influence of 2000–2050 climate change on particulate matter in the United States: results from a new statistical model. Atmos. Chem. Phys. 17, 4355–4367 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Grell, G. A. et al. Fully coupled ‘online’ chemistry within the WRF model. Atmos. Environ. 39, 6957–6975 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, M. et al. Environmental benefits and household costs of clean heating options in northern China. Nat. Sustain. 5, 329–338 (2022).

    Article 

    Google Scholar
     

  • Buchholz, R. R., Emmons, L. K., Tilmes, S. & The CESM2 Development Team CESM2.1/CAM-chem Instantaneous Output for Boundary Conditions (Atmospheric Chemistry Observations and Modeling Laboratory, UCAR/NCAR, 2019).

  • Guenther, A. et al. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 6, 3181–3210 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, M. et al. The impact of aerosol–radiation interactions on the effectiveness of emission control measures. Environ. Res. Lett. 14, 024002 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Reference

    Denial of responsibility! Web Today is an automatic aggregator of Global media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, and all materials to their authors. For any complaint, please reach us at – [email protected]. We will take necessary action within 24 hours.
    DMCA compliant image

    Leave a Comment